
Journal of Computational Physics 229 (2010) 1181–1197
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
One way domain decomposition method with second order
transmission conditions for solving electromagnetic wave problems

Zhen Peng *, Vineet Rawat, Jin-Fa Lee
ElectroScience Laboratory, The Ohio State University, 1320 Kinnear Road, Columbus, OH 43212, USA
a r t i c l e i n f o

Article history:
Received 23 June 2009
Received in revised form 8 October 2009
Accepted 12 October 2009
Available online 27 October 2009

Keywords:
Domain decomposition methods
Second order transmission conditions
Maxwell’s equations
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.10.024

* Corresponding author. Tel.: +1 614 302 8896.
E-mail addresses: peng.98@osu.edu (Z. Peng), raw
a b s t r a c t

Non-overlapping domain decomposition (DD) methods with complex first order Robin-
type transmission conditions (TCs) provide an efficient iterative solution for Maxwell’s
equation. Unfortunately, the first order TCs do not effectively account for some eigenmodes
of the system matrix, which limits the scalability of the methods. In this work, we examine
two TCs with a second order transverse derivative to improve the method’s performance. A
detailed convergence analysis of the two TCs is presented. We then investigate the use of
the two second order TCs in non-conformal and non-overlapping one way DD methods.
Numerical results illustrate the effectiveness of the proposed methods on some model
problems and on several problems of practical interest.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Finite Element based domain decomposition (DD) methods have recently garnered considerable attention due to their
ability to accurately and efficiently solve large and multi-scale electromagnetic radiation and scattering problems [1–9].
The methods are attractive because they allow the solution of large problems with only modest computational resources.
They are also inherently parallel, an important consideration in keeping with current trends in computer architecture. In
general, the DD methods derive their efficiency by decomposing the original large FEM problem into several smaller, more
manageable sub-domains. The sub-domains are solved individually and adjacent sub-domains are then coupled to one an-
other via transmission conditions (TCs). An iterative process is used to adjust boundary conditions for sub-domain problems
until the solution converges to that of the original global problem. The TCs not only enforce the continuity of tangential fields
on the interfaces between sub-domains, but they are also directly related to the convergence of DD method.

For the vector wave equation, the majority of non-overlapping DD methods employ complex first order Robin-type trans-
mission conditions (FOTCs) [10–13]. The FOTCs provide a simple, efficient, and parallel preconditioner for the DD matrix
equation that yields fast and robust iterative solution. The eigenmodes of the DD operator can be classified as either prop-
agating or evanescent, and the FOTC is effective only for the propagating eigenmodes. This limits the scalability of the DD
methods and one must turn to higher order TCs to further improve the performance. As with higher order absorbing bound-
ary conditions [14], a full second order TC (SOTC) is difficult to implement due to a surface divergence term. Instead, we may
add a single second order transverse derivative operator to the FOTC. In [15], an interface condition involving a second order
tangential operator is introduced. In [16–18], another family of SOTCs are proposed, which damp both propagating and eva-
nescent modes. We refer this family of SOTCs as optimized SOTC (SOTC–OPT). In this work, we also investigate a new type of
SOTC, which is shown to improve the eigenspectrum of the DD operator by shifting eigenvalues corresponding to transverse
electric (TE) evanescent modes away from the origin. We denote the new TC by second order TC TE, or SOTC–TE.
. All rights reserved.
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Herein, we investigate non-conformal, non-overlapping DD methods with the use of the SOTC–OPT and SOTC–TE at sub-
domain interfaces. In Section 2.1, the problem statement is presented and the decomposed boundary value problem (BVP)
used in the DD method is presented in Section 2.2. In Section 2.3, we discuss the convergence analysis of the SOTCs. The weak
formulation and discrete formulation for the non-conformal DD methods with SOTCs are discussed in Sections 2.4 and 2.5. In
Section 3.1, we examine eigenvalue distribution of the DD matrix using the SOTCs. In Section 3.2, we characterize the new
methods by examining their scalability with respect to certain parameters and compare the performance of the new meth-
ods to that with FOTC. Lastly, we illustrate the effectiveness of the new methods on a microstrip photonic-bandgap structure
(PBG) in Section 3.3. A summary and conclusion are included in Section 4.

2. Formulation

We first introduce some notations and definitions that will be employed throughout this work. Boldface letters (e.g. u) are
used to denote vectors in R3 while an overhead hat (e.g. û) will signify that the vector has unit magnitude. Finite dimensional
matrices will be represented by uppercase italic characters (e.g. A), while lowercase italic characters will be used to represent
column vectors (e.g. x). The imaginary unit will be represented by j. We denote the time-harmonic electric and magnetic
fields by E and H, respectively. The free space wave number will be denoted by k0 ¼ x ffiffiffiffiffiffiffiffiffiffil0e0

p
, where x ¼ 2pf is the radial

frequency of operation and e0 and l0 are the permittivity and permeability in free space, respectively. The free space intrinsic
impedance is given by g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e

p
. In a material region, the wave number is given by k ¼ x ffiffiffiffiffiffilep

where e and l are the per-
mittivity and permeability of the material. Also, we define er ¼ e=e0 and lr ¼ l=l0 as the relative permittivity and perme-
ability of the material.

2.1. Problem statement

In this paper, we are interested in solving large scale electromagnetic problem by using one way domain decomposition
methods to clearly demonstrate the performances of various TCs considered in this work. Fig. 1 shows a sample example of
one way dissection decomposition of large problem. We replace the unbounded domain R3 by a bounded domain X, with
first order absorbing boundary conditions (ABC) imposed on the finite truncation boundary. Subsequently, the mathematical
model can be described by:
r� l�1
r r� E� k2

0erE ¼ �jk0g0Jimp in X ð1Þ
n̂� ðE� n̂Þ ¼ 0 on CPEC ð2Þ
n̂� ðl�1

r r� EÞ ¼ 0 on CPMC ð3Þ

n̂� ðl�1
r r� EÞ � jk0

ffiffiffiffiffi
er

lr

r
n̂� ðE� n̂Þ

¼ n̂� ðl�1
r r� EincÞ � jk0

ffiffiffiffiffi
er

lr

r
n̂� ðEinc � n̂Þ on CABC ð4Þ
Note that the perfect magnetic conductors (PMC) and perfect electric conductors (PEC) are denoted by CPEC and CPMC, respec-
tively. DD methods are suitable for the solution of this class of problems because they can take advantage of repeated sub-
blocks (see Fig. 1) and provide an efficient and effective preconditioner for the indefinite matrix equation arising from the FE
methods.

2.2. Domain decomposition boundary value problem

To simplify the analysis, we will consider a domain X � R3 and its decomposition into Np ¼ 2 sub-domains such that
X ¼ X1 [X2 (see Fig. 2). Further, we define the interface between sub-domains as C :¼ @X1 \ @X2, and the exterior bound-
aries as f@X i ¼ @Xi \ @X. We assume the interface to be planar in this work. We denote the outward-directed unit normal to
Fig. 1. One way decomposition of a large scale electromagnetic problem.



Fig. 2. Notation for decomposition of the domain.
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@Xi by n̂i. The subscripts i ¼2 f1;2g will denote the restriction of a quantity to Xi. For example, in Xi;Ei will denote the elec-
tric field while eri and lri will denote the relative permittivity and permeability, respectively.

We will also use the tangential trace operator
csðuiÞ :¼ n̂i � uij@Xi
ð5Þ
and tangential components trace operator
psðuiÞ :¼ n̂i � ðui � n̂iÞj@XI
ð6Þ
We begin by defining a boundary value problem (BVP) for the decomposed problem of Fig. 2. It can be written as
r� l�1
r1 r� E1 � k2

0er1E1 ¼ �jk0g0Jimp
1 in X1 ð7Þ

r � l�1
r2 r� E2 � k2

0er2E2 ¼ �jk0g0Jimp
2 in X2 ð8Þ

psðE1Þ ¼ psðE2Þ on C ð9Þ
cr l�1

r1 r� E1
� �

¼ cs l�1
r2 r� E2

� �
on C ð10Þ

psðEiÞ ¼ 0 on CD ð11Þ
cs l�1

ri r� Ei
� �

¼ 0 on CN ð12Þ

cs l�1
ri r� Ei

� �
� jk0

ffiffiffiffiffiffi
eri

lri

r
psðEiÞ ¼ 0 on g@Xi ð13Þ
for i e 1, 2 and with Ei 2 H0ðcurl;XiÞ represents the electric field in a sub-domain. Note that E1 and E2 are allowed to be dis-
continuous on C. Eqs. (9) and (10) enforce the tangential continuity of the electric and magnetic fields of the otherwise
unconstrained sub-domain fields. These conditions render the decomposed BVP above equivalent to the of the original prob-
lem domain X. Eqs. (11) and (12) give homogeneous Dirichlet and Neumann boundary conditions on the PEC surfaces, CD

and PMC surfaces, CN, respectively. Finally, Eq. (13) is a first order absorbing boundary condition (ABC) on the exterior of the
problem domain.

Here, our general interface conditions with second order derivatives in the transverse direction are presented as
cs l�1
r1 r� E1

� �
þ apsðE1Þ þ brs � l�1

r1 rs � psðE1Þ ¼ �cs l�1
r2 r� E2

� �
þ apsðE2Þ þ brs � l�1

r2 rs � psðE2Þ ð14Þ
cs l�1

r2 r� E2
� �

þ apsðE2Þ þ brs � l�1
r2 rs � psðE2Þ ¼ �cs l�1

r1 r� E1
� �

þ apsðE1Þ þ brs � l�1
r1 rs � psðE1Þ ð15Þ
with complex coefficients a and b to be determined. Straight-forward algebraic manipulation shows that the correct tangen-
tial field continuities of (9) and (10) are enforced if a – 0. In the following section we show that the proper choice of param-
eters in this interface condition can improve the convergence for both propagation modes and evanescent modes.

2.3. Convergence analysis for the second order transmission conditions (SOTCs)

We will assess the convergence behavior of the DD algorithm which uses the SOTCs (14) and (15) by using an approach
equivalent to the Fourier analysis of [10]. There, the convergence factors for coefficients of a stationary iterative algorithm
are derived by making use of an idealized decomposition of R3 by the infinite plane z = 0. A rotation of the fields in the Fou-
rier space leads to a decoupling of the transverse electric (TE) and transverse magnetic (TM) fields and simplifies the analysis
in the Fourier domain.

We once again start by decomposing R3 into two semi-infinite domains with C defined to be the plane z = 0, X1 ¼ R2�
ð1;0� and X2 ¼ R2 � ½0;1Þ. To further simplify the analysis, we consider plane waves in free space traveling in the yz plane.
The SOTCs are imposed on C and an iterative solution process is considered. We note that while this analysis is performed
using a simplified problem, the results obtained correspond very well to the performance seen when applied to real-life engi-
neering applications. The convergence factors of the iterative algorithm are determined as functions of the ẑ directed wave
number kz using a decomposition of the solution into TE and TM components. The magnitude of the convergence factor cor-
responds to the spectral radius (the maximum magnitude of the eigenvalues) of the DD algorithm operator. An operator with
a spectral radius q < 1 is said to be convergent because a simple stationary iterative algorithm is guaranteed to converge to
the solution. While this condition need not be met when using Krylov subspace iterative method, a small spectral is still pref-
erable in order to provide rapid and robust convergence of the iterative method. The following interface iterations on C are
used to derive our general convergence factors



Table 1
TE and TM field representations on the domain interface.

X1 X2

psðEðnÞÞ csðmu�1
r r� EðnÞÞ rs � l�1

r rs � psðEðnÞÞ psðEðnÞÞ csðlsr� EðnÞÞ rs � l�1
r rs � psðEðnÞÞ

TE x̂cðnÞ1 e�jky y �x̂cðnÞ1 jkze�jky y x̂cðnÞ1 k2
y e�jky y x̂cðnÞ2 e�jkyy �x̂cðnÞ2 jkze�Jky y x̂cðnÞ2 j2

y e�jky y

TM ŷcðnÞ1
kz
k e�jky y �ŷc1jke�jky y 0 �ŷcðnÞ2

kz
k e�jky y ŷcðnÞ2 jke�jky y 0
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cs l�1
r1 r� EðnÞ1

� �
þ apsðEðnÞ1 Þ þ brs � l�1

r1 rs � ps EðnÞ1

� �
¼ �cs l�1

r2 r� Eðn�1Þ
2

� �
þ aps Eðn�1Þ

2

� �
þ brs � ps Eðn�1Þ

2

� �
ð16Þ

cs l�1
r2 r� EðnÞ2

� �
þ apsðEðn�1Þ

2 Þ þ brs � l�1
r2 rs � ps EðnÞ2

� �
¼ �c l�1

r1 r� Eðn�1Þ
1

� �
þ aps Eðn�1Þ

1

� �
þ brs � ps Eðn�1Þ

1

� �
ð17Þ
We first consider TE modes and the following solutions in each of the sub-domains:
EðnÞ1 ¼ x̂cðnÞ1 e�jðkyy�kzzÞ ð18Þ
EðnÞ2 ¼ x̂cðnÞ2 e�jðkyyþkzzÞ ð19Þ
where cðnÞ1 and cðnÞ2 are the excitation coefficients. For TM modes, the electric fields in the sub-domains are written as
EðnÞ1 ¼
cðnÞ1

k
ðŷkz þ ẑkyÞe�jðkyy�kzzÞ ð20Þ

EðnÞ2 ¼
cðnÞ2

k
ð�ŷkz þ ẑkyÞe�jðkyyþkzzÞ ð21Þ
The field representations of Table 1 can be obtained through simple vector manipulation. Substitution of the quantities
which corresponds to TE modes in Table 1 into (16) and (17) gives:
CðnÞ1 ð�jkz þ aþ bk2
yÞ ¼ cðn�1Þ

2 jkz þ aþ bk2
y

� �
ð22Þ

Cðn�1Þ
2 ð�jkz þ aþ bk2

yÞ ¼ cðn�2Þ
1 jkz þ aþ bk2

y

� �
ð23Þ
and we obtain the convergence factor
qTE ¼
cðnÞ1

cðn�2Þ
1

�����
����� ¼ jkz þ aþ bk2

y

�jkz þ aþ bk2
y

�����
�����

2

¼ jkz þ aþ bðk2 � k2
z Þ

jkz � a� bðk2 � k2
z Þ

�����
�����

2

ð24Þ
where we have made use of the dispersion relation k2 � k2
y þ k2

z .

Similarly, we obtain the convergence factor for TM modes as
jqTMj ¼
k2 � jakz

k2 þ jakz

�����
�����

2

ð25Þ
2.3.1. First order transmission condition (FOTC)
By choosing b = 0 and a = �jk0 we will obtain the first order Robin-type TC. This leads to the convergence factors
jqTEj ¼ jqTMj ¼
kz � k
kz þ k

����
����2 ð26Þ
We note that for propagating modes (real, positive kz) we obtain jqTEj ¼ jqTMj < 1 while at cutoff (kz = 0) and for evanescent
modes (imaginary kz) we have jqTEj ¼ jqTMj ¼ 1. Hence, the FOTC leads to convergence of propagating modes but not evanes-
cent ones. The largest evanescent mode supported by the discretization increases with decreasing mesh size or increasing
polynomial order. This is due to the increased ability of the higher order basis functions or finer mesh to represent the rap-
idly oscillating interface modes. Consequently, the performance of DD methods with a FOTC deteriorates drastically with
very small elements on the domain interfaces. Fig. 3 depicts the convergence factors for the FOTC.

2.3.2. Second order transmission condition–TE type (SOTC–TE)
For the SOTC–TE, we still choose a = �jk0 to obtain the same convergence rate for all TE and TM propagating modes. Now

we have an additional degree of freedom b for the second order tangential differential term. This parameter is chosen to
accelerate the convergence for the TE evanescent modes. We do this because in the E field formulation used here, the electric



Fig. 3. Convergence factor of FOTC.

Fig. 4. Convergence factor of SOTC–TE.
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field is represented to a greater accuracy than the magnetic field (which is obtained from the curl of E). Thus, higher oscil-
lation is supported for the transverse electric field and the most troublesome evanescent modes are therefore of TE type.

The choice of b is made as follows. We let kmax
s denote the maximum transverse wave number supported by the numerical

grid on C. In our implementation, we simply set kmax
s ¼ p

hmin
, where hmin is the minimum mesh size. According to the disper-

sion relation we have ~kz ¼ �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmax

s Þ
2 � k2

q
. By setting b ¼ j

kþ~kz
, we obtain the convergence factors for TE and TM modes as
jqTEj ¼
ðk� kzÞð~kz � kzÞ
ðkþ kzÞð~kz þ kzÞ

�����
�����

2

ð27Þ

jqTMj ¼
kz � k
kz þ k

����
����2 ð28Þ
It can be shown that jqTEj < 1 for both propagating and evanescent TE modes. However, jqTMj < 1 only for propagating TM
modes. For the evanescent TM modes, jqTMj ¼ 1. The convergence factors are plotted in Fig. 4. It is seen in Fig. 4 that there are
two zero values of convergence factor for TE modes, one in the propagating region and the other in the evanescent region.

2.3.3. Second order optimized transmission condition (SOTC–OPT)
By choosing a ¼ � 1

p k2
0 and b ¼ 1

p, we obtain the same interface conditions as presented in [17]. p is a complex number
and ReðpÞ > 0 and ImðpÞ > 0. The convergence factors for TE and TM modes are obtained as following:
jqTEj ¼ jqTMj ¼
jpþ kz

jp� kz

����
����2 ð29Þ
Eq. (29) shows that the same convergence factors are obtained for both TE and TM modes and that the zero convergence
value for the optimal TC occurs at kz = �jp for both TE and TM modes. However, the so-called optimal TC requires
ReðpÞ ¼ ImðpÞ and thus does not provide zero convergence values for any pure propagating or evanescent mode. The param-
eter p is chosen by considering the size of the interface and the mesh size on the interface and is given by [18]



Fig. 5. Convergence factor of SOTC–OPT.
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ReðpÞ ¼ ImðpÞ ¼

ffiffiffiffiffiffiffiffiffiffi
kmax
s

q
½minðk2

þ � k2
0; k

2
0 � k2

�Þ�
1=4ffiffiffi

2
p ð30Þ

Kmin
s ¼ 0

p
lmax

� 	
; kmax

s ¼ 0
p

hmin

� 	
; k� ¼ k0 � kmin

s ; kþ ¼ k0 þ kmin
s ð31Þ
where kmin
s denotes the smallest frequency relevant to the subdomain and lmax denotes the largest length of the sub-domain.

The convergence factors are plotted in Fig. 5.
From Fig. 5 we see that for the SOTC–OPT, jqTMj ¼ jqTEj < 1, for both propagating and evanescent TE and TM modes and it

therefore damps both TE and TM evanescent modes. In theory, it is more robust than SOTC–TE. However, it is not always
more efficient than the SOTC–TE. The damping of evanescent modes comes at the expense of less damping for both TE
and TM propagating modes. It is expected that, the SOTC–OPT will perform better for problems with very small elements,
while the second order TE will be the better choice when propagating modes dominate the spectrum. Numerical experi-
ments supporting this analysis are presented in Section 3.

2.4. Weak formulation

We now turn to the weak formulation of the DD method to solve Eqs. (7)–(15). First, we define some mathematical nota-
tion and recall Sobolev spaces required for the formulation.

Volume and surface sesquilinear forms are defined by
ðu;vÞX :¼
Z

X

�u � v dv

hu;vi@X :¼
Z
@X

�u � v ds
where the over bar denotes conjugation. Note that we sometimes use ðu;vÞX to mean the broken form ðu1;v1ÞX1
þ ðu2;v2ÞX2

and, similarly, hu;vi@X ¼ hu1;v2i e@X1
þ hu2;v2if@X2

.

We recall the standard Sobolev spaces HsðXÞ for s 2 R and set
HsðXÞ :¼ ðHsðXÞÞ3

L2ðXÞ :¼ H0ðXÞ
L2ðXÞ :¼ H0ðXÞ
Also we define
Hðcurl;XÞ :¼ fu 2 L2ðXÞjr � u 2 L2ðXÞg
Hðdiv;XÞ :¼ fu 2 L2ðXÞjr � u 2 L2ðXÞg
H�1=2ðcurls; @XÞ :¼ fu 2 H�1=2ð@XÞjn̂ � ðrs � uÞ 2 H�1=2ð@XÞ; n̂ � u ¼ 0g
H�1=2ðdivs; @XÞ :¼ fu 2 H�1=2ð@XÞjrs � u 2 H�1=2ð@XÞ; n̂ � u ¼ 0g
H0ðcurl;XÞ :¼ fu 2 Hðcurl;XÞjcsðuÞ ¼ 0 on CDg
Note that H0ðcurl;XÞ is the space of curl-conforming functions that satisfy essential boundary conditions on CD, the collec-
tion of surfaces on which Dirichlet boundary conditions are applied. This is the space in which the electric field resides with
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the appropriate Dirichlet conditions {e.g. Perfect Electrically Conducting (PEC)]. That is, we may write Ei 2 H0ðcurl;XiÞwhere
the two spaces are understood to have different Dirichlet boundary conditions. Finally, we recall that the function spaces for
the traces of curl-conforming functions are given
H�1=2ðcurls; @XÞ :¼ fpsðuÞju 2 Hðcurl;XÞg
H�1=2ðdivc; @XÞ :¼ fpsðuÞju 2 Hðcurl;XÞg
and that
Hðcurl;XÞ0 ¼ Hðdiv;XÞ
H�1=2ðcurls; @XÞ0 ¼ H�1=2ðdivs; @XÞ
where x0 denotes the function space dual to X in the appropriate L2 inner product.
Here, we rewrite our TCs in a slightly different form and note that, for a non-singular operator L, we may equivalently

express the tangential continuity conditions of (9) and (10) via the TCs
csðl�1
r1 r� E1Þ þ LðpsðE1ÞÞ ¼ �csðl�1

r2 r� E2Þ þ LðpsðE2ÞÞ ð32Þ
csðl�1

r2 r� E2Þ þ LðpsðE2ÞÞ ¼ �csðl�1
r1 r� E1Þ þ LðpsðE1ÞÞ ð33Þ
We will consider three operators to define the TCs. The first, L1, is an imaginary scaling factor that results in the usual com-
plex first order Robin TC for non-overlapping domain decomposition. The second operator, LTE, gives the SOTC–TE. The final
operator LOPT, is the SOTC–OPT proposed in [17].

We write the three operators as
L :¼ a
LTE :¼ aþ brs � l�1

r rs�

LOPT :¼ �1
p
ðrs � l�1

r rs ��k2
0erÞ
To implement the DD algorithm, we introduce an auxiliary variable. This interface variable is defined as
ki :¼ cs l�1
ri r� Ei

� �
� LðpsðEiÞÞ ð34Þ
The TCs can now be written using the auxiliary variable as
k1 þ 2LðpsðE1ÞÞ þ k2 ¼ 0 ð35Þ
k2 þ 2LðpsðE2ÞÞ þ k1 ¼ 0 ð36Þ
In what follows, we will abuse the notation somewhat and split C into C12, the interface as seen from X1, and C21, the inter-
face as seen from X2. We do so in order to include the case where interface meshes of the discrete method do not match.

We then test Eqs. (7) and (8) using curl-conforming functions wi 2 H0ðcurl;XiÞ; i 2 f1;2g to give (after an integration by
parts)
r�wi;l�1
ri r� Ei

� �
Xi
� k2

0ðwi; eriEiÞXi
þ hðpsðwiÞ; cs l�1

ri r� Ei
� �

iC ¼ �jk0g0 wi; J
imp
i

� �
Xi

ð37Þ
where we have ignored the treatment of the exterior boundary for simplicity. Now, using (34) we obtain
ðr �wi;l�1
ri r� EiÞXi

� k2
0ðwi; eriEiÞXi

þ hpsðwiÞ;LðpsðEiÞÞiCij
þ hpsðwiÞ; kiiCij

¼ �jk0g0 wi; J
imp
i

� �
Xi

ð38Þ
We choose to represent the auxiliary variables ki, in a properly chosen space H�1=2
0 ðcurls; CijÞ. We write ki 2 H�1=2

0 ðcurls; CijÞ
and choose test function mi from the same space. Then, we test Eqs. (35) and (36) with the mi to obtain
hmi; kiiCij
þ 2hmi;LðpsðEiÞÞiCij þ hmi; kiiCij

¼ 0

8i; j 2 f1;2g; i – j: ð39Þ
The final weak form for the two domain problem is then given by:
Seek ðE1;EÞ2 2 H0ðcurl;X1Þ �H0ðcurl;X2Þ; ðk1; k2Þ 2 H�1=2

0 ðcurls; C12Þ �H�1=2
0 ðcurls; C21Þ, such that
r�w1;l�1
r1 r� E1

� �
X1
� k2

0ðw1; er1E1ÞX2
þ hpsðw1Þ;LðpsðE1ÞÞiC12

þ hpsðw1Þ; k1iC12
¼ �jk0g0ðw1Jimp

1 ÞX1
ð40Þ

r �w2;l�1
r2 r� E2

� �
X2
� k2

0ðw2er2EÞX2
þ hpsðw2Þ;Lðpsðw2ÞÞiC21

þ hpsðw2Þ; k2iC21
¼ �jk0g0 w2; J

imp
2

� �
X2

ð41Þ

hm1; k1iC12
þ 2hm1;LðpsðE1ÞÞiC12

þ hm1; k2iC12
¼ 0 ð42Þ

hm1; k2iCP21
2hm2;LðpsðE2ÞÞiC12

þ hm2; k1iC21
¼ 0 ð43Þ

8ðw1;w2Þ 2 H0 2 H0ðcurl;X1Þ �H0ðcurl;X1Þ; ðm1; m2Þ 2 H�1=2
0 ðcurls; C12Þ �H�1=2

0 ðcurls; C21Þ:
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2.5. Discrete formulation

We now introduce independent tetrahedral meshes, Ki, in each region Xi. The surface meshes induced on Cij is denoted
by T ij On each of the sub-domain, we define discrete trial and test functions, Eh

i 2 Xh
i and wh

i 2 Xh
i respectively, with

Xh
i � H0ðcurl;XiÞ. Here, Xh

i is taken to be the space of basis functions defined [20], with order p = 2. On the interfaces, we also
define discrete trial and test functions, kh

i 2 Yh
i and mh

i 2 Yh
i , respectively, with Yh

i � H�1=2ðcurls; CijÞ. yH
I will be taken as the

two-dimensional restriction of Xh
i , but with DOFs defined independently where appropriate.

We may now write the discrete DD method as:
Seek ðEh

1;EÞ
h
2 2 Xh

1 � Xh
2 ; ðk

h
1; k

h
2Þ 2 Yh

1 � Yh
2, such that
r�wh
1;l

�1
r1 r� Eh

1

� �
K1

� k2
0ðwh

1; er1Eh
1ÞK1
þ hpsðwh

1Þ;L psðEh
1Þ

� �
iJ 12
þ hpsðwh

1Þ; k
h
1iJ 12

¼ �jk0g0ðwh
1; J

imp
1 ÞK1

ð44Þ

r �wh
2;l

�1
r2 r� Eh

2

� �
K2

� k2
0 wh

2; er2Eh
2

� �
K2

þ hpsðwh
2Þ;L psEh

2

� �
J 21

þ hpsðwh
2Þ; k

h
2iJ 21

¼ �jk0g0 wh
2; J

imp
2

� �
K2

ð45Þ

hmh
i ; k

h
1iJ 12

þ 2hmh
1;L psðEh

1Þ
� �

J 12

þ hmh
1; k

h
2iJ 12

¼ 0 ð46Þ

hmh
2; k

h
2iJ 21

þ 2hmh
2;L psðEh

2Þ
� �

iJ 21
þ hmh

2; k
h
1iJ 21

¼ 0 ð47Þ

8ðwh
1;w

h
2Þ 2 Xh

1 � Xh
2; mh

1; m
h
2

� �
2 Yh

1 � Yh
2:
Now we may write the matrix equation to be solved as
AII
1 AIC

1 0 0 0 0

ACI
1 ACC

1 þ B1 D1 0 0 0
0 C1 T11 0 0 T12

0 0 0 AII
2 AIC

2 0

0 0 0 ACI
2 ACC

2 þ B2 D2

0 0 T21 0 C2 T22

2
6666666664

3
7777777775

E1

e1

k1

E2

e2

k2

2
666666664

3
777777775

y1

0
0
y2

0
0

2
666666664

3
777777775

ð48Þ
where the block matrices and vectors are given by
Ai :¼ ðr�wh
i ;l

�1
ri r�wh

i ÞKi
¼ k2

0ðwh
i ; er1wh

i ÞKi
ð49Þ

Bi :¼ hpsðwh
i Þ;Lðpsðwh

i ÞÞiJ ij
ð50Þ

Ci :¼ 2hmh
i ;Lðpsðwh

i ÞÞJ ij
ð51Þ

Di :¼ hpsðwh
i Þ; kiiJ ij

ð52Þ

Tij :¼ hmh
i ; m

h
j iJ ij

ð53Þ

yi :¼ �jk0goðwh
i ; J

imp
i ÞKi

ð54Þ
and Ei represents the electric field DOFs which are interior to the sub-domain, ei represents the electric field DOFs with non-
zero tangential component on C, and ki represents the DOFs for the auxiliary variable.

The matrices Bi and Ci depend upon the TC operators and they will be denoted by a subscript corresponding to the appro-
priate TC operator.

For example, for the first order TC operator we obtain
Bi;FOTC ¼ hpsðwh
i Þ;apsðwh

i ÞiJ ij
ð55Þ

Ci;FOTC ¼ 2hmh
i ;apsðwh

i ÞiJ ij ð56Þ
For the second order TE operator, we have
Bi;SOTC—TE ¼ hpsðwh
i Þ;apsðwh

i ÞiJ ij
þ hrsðwh

i Þ;brs � psðwh
i ÞiJ ij

ð57Þ

Ci;SOTC—TE ¼ 2hmh
i ;apsðwh

i ÞiJ ij
þ 2hrs � mh

i ;brs � psðwh
i ÞiJ ij

ð58Þ
Finally, for the second order optimal TC,
Bi;SOTC—OPT ¼ hpsðwh
i Þ;

k2
0

p
psðwh

i ÞiJij
þ hrs � psðwh

i Þ;
1
p
rs � psðwihÞiJ ij

ð59Þ

Ci;SOTC—OPT ¼ 2hmh
i ;

k2
0

p
psðwh

i ÞiJij
þ 2hrs � mh

i ;
1
p
rs � psðwh

i ÞiJ ij
ð60Þ
We will solve the matrix (49) via the FETI-like procedure of [13]. This involves the computation of a numerical Green’s func-
tion for each of the sub-blocks of the problem geometry. Here, we refer to blocks as unique, possibly repeated, sub-structures
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in the problem domain. A single numerical Green’s function needs to be computed for each sub-block and may be re-used for
all sub-domains sharing that geometry. The interested reader if referred to [10,13,19] for a detailed explanation of the solu-
tion algorithm. It is also worth noting that one advantage of this implementation is that the coupling matrix is much smaller
than the previous version [10,13,19]. We direct interested readers to a recent Ph.D. dissertation for full and detail discussions
on the implementation in Ref. [22].

We may write the matrix Eq. (49) to be solved as
A1 C12

C21 A2

� 	
x1

x2

� 	
¼

b1

b2

� 	
ð61Þ
where the matrices and vectors are given by
Ai ¼
AII

i AIC
i 0

ACI
i ACC

i þ Bi Di

0 Ci Tii

0
BB@

1
CCA ð62Þ

Cij ¼

0 0 0

0 0 0

0 0 Tij

0
BB@

1
CCA ð63Þ

xi ¼
Ei

ei

ki

0
BB@

1
CCA ð64Þ

Bi ¼
yi

0

0

0
BB@

1
CCA ð65Þ
By writing a block-Jacobi splitting of the system matrix (62) as
A ¼
A1 0
0 A2

� 	
�

0 �C12

�C21 0

� 	
¼ M � N ð66Þ
where M ¼ A1 0
0 A2

� 	
and N ¼ 0 �C12

�C21 0

� 	
. The Jacobi preconditioned system as
M�1A ¼ M�1ðM � NÞ ¼ 1�M�1N ð67Þ
The convergence factors derived in Section 2.3 predict the eigenvalue distribution of matrix M�1N. The eigenvalues of the
matrix M�1A reside in a unit circle centered at one, due to the shift provided by the identity matrix.

3. Numerical experiment

In this Section, we first examine the eigenspectra of the preconditioned matrices obtained using the three TCs under con-
sideration. Then we examine the performance of the three DD algorithms by examining their scalability with respect to cer-
tain parameters of interest. Lastly, we solve several problems of practical interest to demonstrate the superiority of one of
the second TCs over the conventional Robin TC.

We will use a relative residual defined as
e ¼ kM
�1ðAx� bÞk2

kM�1bk2

ð68Þ
where M is the FETI preconditioner, A is the DD matrix, and b is the excitation vector, and x is the solution at the current
iteration. We note that although we solve the matrix equations to a relative residual e = 10�8, higher tolerances of
e = 10�2 or e = 10�3 are often sufficient in practice. The ability to quickly converge to low tolerances is a good indicator of
the robustness of the method.

3.1. Eigenspectra of the DD matrices

We will use a k0=3 segment of an X-band (WR-90) rectangular waveguide operated above cutoff for only the TE10 mode at
10 GHz. The geometry of the waveguide is depicted in Fig. 6. Here k0 is the wavelength in free space. Both ends of the
waveguide are terminated by a first order ABC. The waveguide is partitioned by a transverse plane into two equally sized
sub-domains that are meshed independently and quasi-uniformly such that the interface meshes do not match. Two



Fig. 6. A WR-90 waveguide (a) cross section; (b) the electric fields at 10 GHz.

Table 2
Choices of b and p versus different mesh sizes.

hmin (m) kmax
s b (SOTC–TE) p (SOTC–OPT)

h ¼ k0=4 0.00615 510.828 (�0.16833, �0.37416) (201.036, 201.036)
h ¼ k0=8 0.00312 1007.725 (�0.04330, �0.20351) (282.296, 282.296)
h ¼ k0=12 0.00187 1680.261 (�0.01556, �0.12380) (364.607, 364.607)
h ¼ k0=16 0.00138 2280.463 (�0.00845, �0.09150) (424.764, 424.764)

Fig. 7. Eigenspectra of FOTC for a WR-90 waveguide (a) h ¼ k0=8; (b) h ¼ k0=12.

Fig. 8. Eigenspectra of SOTC–TE for a WR-90 waveguide (a) h ¼ k0=8; (b) h ¼ k0=12.
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different mesh sizes, h ¼ k0=8 and k0=12, are used to study the eigenspectra of the block-Jacobi preconditioned matrix of
(49) for FOTC, SOTC–TE and SOTC–OPT, respectively. Table 2 presents the choices of b and p for SOTC–TE and SOTC–OPT with
different mesh sizes. Here k� and k+ in Eq. (31) are chosen as 137.428 and 274.855, which are corresponding to TE10 and TE20

modes, respectively. Same parameters are used in the convergence study in Section 3.2.



Fig. 9. Eigenspectra of SOTC–OPT for a WR-90 waveguide (a) h ¼ k0=8; (b) h ¼ k0=12.

Fig. 10. Eigenspectra of for a WR-90 waveguide at 20 GHz (a) FOTC; (b) SOTC–TE; (c) SOTC–OPT.
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First we examine the eigenspectra of the DD method with FOTC. From Fig. 7 we can see that many eigenvalues, those
corresponding to evanescent modes, lie on the shifted unit circle. As the mesh is refined, the number of evanescent modes
increases and the eigenvalues quickly approach zero. These small but non-zero eigenvalues will significantly degrade the
performance of iterative Krylov subspace method. The remaining eigenvalues within the unit circle are the mixed modes.
Because the non-conformity of the mesh allows coupling between propagating and evanescent modes on the interface,
resulting in mixed modes which are neither purely propagation, nor evanescent. These modes have |q| < 1 even for FOTC.

It is worth to note that there are four clusters near the unit circle and two bands of eigenvalues connecting the anti-sym-
metric counterparts. The set that is nearer to the real axis corresponds to the TE modes while the other set corresponds to the
TM modes. This is readily seen by examining Fig. 8 where, when the SOTC–TE is used, one of the two sets (the one corre-
sponding to TE evanescent modes) is significantly altered.

For the SOTC–TE, the TE evanescent modes are brought well within the shifted unit circle and the eigenvalues are clus-
tered in the center. We also note that the other set (the TM evanescent modes) remains unchanged. This comes as no surprise



Fig. 11. Iterative solver convergence for a WR-90 waveguide with h-refinement (a) FOTC; (b) SOTC–TE; (c) SOTC–OPT.
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since SOTC–TE does nothing to improve the TM modes. This is in agreement with the analysis in Section 2.3.2. Note that the
evanescent modes with very small but non-zero eigenvalues are those that significantly degrade the performance of iterative
Krylov subspace method. By decreasing the mesh size, both TE and TM evanescent modes move along the unit circle towards
the origin, but the effect of TM modes is to a much lesser degree than TE ones. There fore the TM evanescent modes have far
less impact on solver convergence than TE ones. As SOTC–TE takes care of the most troublesome TE evanescent modes, it is
very effective in improving the condition number of the DD matrix in many practical applications.

Next, we see in Fig. 9 that, in agreement with the theory of Section 2.3.3, the SOTC–OPT provides convergence for all TE
and TM propagating and evanescent modes. In this case, all eigenvalues are within the unit circle. The clustering of eigen-
values some fixed distance from one, is due to the fact the convergence of purely propagating and evanescent modes is lim-
ited by the minima of the curves of Fig. 4. The mixed modes however, show convergence better that these minima.

We now increase the frequency to f = 20 GHz and repeat the analysis. At this operating frequency, both TE11 and TM11

modes propagate. From Fig. 10 we also notice that, at this higher frequency, the behavior of SOTC–TE and SOTC–OPT con-
sistent with that discussed above. In this study, k� and k+ in Eq. (31) are chosen as 413.712 and 515.353, which are corre-
sponding to TE21 and TE31 modes, respectively.

3.2. Convergence study

The same WR-90 rectangular waveguide operated at 10 GHz is used for the following study. We are first concerned with
the solver behavior as the mesh size, h, is reduced. This is of great interest as the accuracy of the method, as in the conven-
tional FEM, can be controlled by refining the mesh. We use a segment of waveguide divided into five sub-domains of length
2k0=15. The cross section this waveguide is 0.762k0 � 0.339k0. The mesh size is varied from h ¼ k0=4 to k0=16 and the con-
vergence of the GCR(10) solver is observed. Fig. 11(a) and (b) demonstrate that the FOTC and SOTC–TE are somewhat depen-
dent upon mesh size, though the SOTC–TE demonstrates a considerable improvement in convergence. Fig. 11c demonstrates
that the SOTC–OPT is quite insensitive to mesh size. This behavior can be explained by the fact that mesh refinement leads to
an increase in evanescent modes on the interfaces. The FOTC does nothing to damp these modes while the SOTC–TE only



Fig. 12. Iterative solver convergence for a WR-90 waveguide with reduced sub-domain size (a) FOTC; (b) SOTC–TE; (c) SOTC–OPT.
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damps a portion of the spectrum. The SOTC–OPT deals effectively with both TE and TM evanescent modes and thereby yields
superior performance.

The effect of the propagating and evanescent modes can also be seen in the character of the convergence for the three
methods. The FOTC and SOTC–TE damp propagating modes well, and to the same degree. This is what gives the similar rapid
initial convergence in Fig. 11a and b. The convergence of FOTC is then slowed by the solution of the evanescent portion of the
spectrum. The convergence of SOTC–TE also degrades, but to a lesser degree because of the damping of the evanescent TE
modes. The SOTC–OPT damps all propagating and evanescent modes to a similar degree and therefore the convergence
curves of that method maintain a relatively constant rate.

Secondly, we examine the performance of the methods as the size of the sub-domains is reduced. The same physical prob-
lem, a waveguide of length 2k0=3, is used and the mesh size is kept fixed at h ¼ k0=8. The waveguide is partitioned into suc-
cessively more sub-domains and solved using these three TCs. Once again, as more interfaces are introduced, more
evanescent modes exist on the interfaces. Worse, the evanescent modes have less space in which to decay between inter-
faces and undergo multiple reflections. Because of this we see once again that the SOTC–OPT (see Fig. 12(c)), which handle
all evanescent modes effectively, performs better than both the FOTC (see Fig. 12(a)) and the SOTC–TE (see Fig. 12(b)).

Lastly, we examine the behavior of the methods as the problem size increases. We use a fixed sub-domain size of 2k0=15
and increase the length of the waveguide by increasing the number of sub-domains. The mesh size is kept fixed at h ¼ k0=8.
Fig. 13 demonstrates the convergence of the methods for 5, 10, 20, 50, and 100 sub-domains. In this case, the propagating
modes are of great significance because the wave must travel from one end of the waveguide to the other. In this case, we see
that all three methods show a dependence on the problem size. However, the FOTC (see Fig. 13(a)) and the SOTC–TE (see
Fig. 13(b)) significantly outperform the SOTC–OPT because the SOTC sacrifices the convergence of propagating modes in or-
der to account evanescent modes. No such sacrifice is made in the SOTC–TE which provides the best convergence. To con-
solidate this study, we increase the frequency to f = 20 GHz and repeat the analysis. The excitation changes to TM11 mode.
Again, all three methods show dependences on the problem size. Fig. 14(a) shows that the convergence of FOTC degrades
rapidly as the FOTC does nothing to damp evanescent modes. The SOTC–TE shows significantly improvement over FOTC,
but still degrades at small residues because of the TM evanescent portion of the spectrum. From Fig. 14(c) we observe that
the behavior of SOTC–OPT is similar at this higher frequency.



Fig. 13. Iterative solver convergence for a WR-90 waveguide with increased problem size (a) FOTC; (b) SOTC–TE; (c) SOTC–OPT.
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3.3. Microstrip photonic-bandgap (PBG) structure

The last example we use is a microstrip PBG structure [21]. The geometry of the PBG structure is shown in Fig. 15. There
are 10 dielectric disks between the microstrip line and the ground plane. The thickness h and width w of microstrip are
0.5 mm and 19.625 mm, respectively. The disk spacing is equal to the microstrip width and the disk radius is 3.925 mm with
dielectric permittivity edisk = 9. The background permittivity er = 1. We first study the convergence of our approaches with a
stopping criteria of e = 1.0 � 10�8 at two frequencies, f = 3 GHz and f = 5 GHz. The simulation uses 10 sub-domains with mesh
size h ¼ k0=8, and requires 201,735 DOFs at 3 GHz and requires 303,834 DOFs at 5 GHz. The excitation in this example is
quasi-TEM. Table 3 presents the choices of parameters for SOTC–TE and SOTC–OPT at two different frequencies. Here k- is
0 and kþ ¼ p=w ¼ 160:08. The convergence histories of the iterative solvers for FOTC, SOTC–TE and SOTC–OPT are given
in Fig. 16.

We see that the SOTC–TE converges much faster than the FOTC, requiring only 38 iterations while the FOTC fails to con-
verge to e = 1.0 � 1.0�8 in 100 iterations at 3 GHz. The dramatic improvement in the SOTC–TE’s performance can be attrib-
uted to the small mesh elements in the vicinity of the fine features of the geometry. This leads to elements with mesh size
h � k0=100 on some interfaces. The fine interface meshes give rise to evanescent modes whose eigenvalues approach the ori-
gin and deteriorate the iterative solution using the FOTC. By moving the TE evanescent eigenvalues away from the origin the
SOTC–TE provides great improvement.

Next we examine the behavior of SOTC–OPT. It is worth noting that the performance of SOTC–OPT are different at
f = 3 GHz and f = 5 GHz, which locate at passband at stopband, respectively. At 3 GHz, the propagating modes are of great
importance because the wave travel from one end of the microstrip to the other. In this case, SOTC–OPT is even worse than
FOTC. At 5 GHz, the frequency locates at the stopband. There is no wave traveling from one end to the other and the prop-
agating modes are less important than the first case. Now the SOTC–OPT shows improvements over the FOTC. Fig. 17 shows
the magnitude of the electric fields on the microstrip line at f = 3 GHz and f = 5 GHz. From Fig. 17 we can clearly see the effect
of this bandgap structure.



Fig. 14. Iterative solver convergence for a WR-90 waveguide with increased problem size, f = 20 GHz (a) FOTC; (b) SOTC–TE; (c) SOTC–OPT.

Table 3
Choices of b and p for PBG structure.

Freq. hmin (m) kmax
s b (SOTC–TE) p (SOTC–OPT)

3GHz 0.00025 12566.4 (�7.95765e�05, 3.98159e-07) (628.553, 628.553)
5GHz 0.00025 12566.4 (�7.95747e�05, 6.63598e-07) (811.432, 811.432)

Fig. 15. Geometry of the microstrip PBG structure (a) slide view; (b) top view.
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Lastly, the S-parameters calculated by the proposed method are compared with those from the Rayleigh multipole meth-
od [21] over a frequency band from 1.0 to 7.5 GHz in Fig. 18. In this simulation, 131 frequency points and stopping criteria
e = 1.0 � 10�3 are used. Good agreement is observed between the two methods.



Fig. 16. Solver convergence for PBG structure (a) f = 3 GHz; (b) f = 5 GHz.

Fig. 17. The magnitude of the electric fields on the microstrip line (a) f = 3 GHz; (b) f = 5 GHz.

Fig. 18. The S-parameters for the PBG structure (a) S11 parameters; (b) S21 parameters.
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4. Conclusion

The conventional Robin TC is effective only for propagating modes, not evanescent modes, which lead to a degradation in
DD solver convergence when fine interface meshes and/or basis functions with high polynomial are used. To remedy this
problem, two second order TCs were presented and shown, in agreement with the theory, to improve the convergence of
the DD methods. It is clearly seen from the numerical results above that the performances of second order TCs depend to
a great degree on the physics of the problem. However, the use of the SOTC–TE, unlike the SOTC–OPT, always provides supe-
rior convergence as compared to the FOTC. Although the h and sub-domain size dependencies are of some concern, in prac-
tice, we expect the SOTC–TE to perform very well.
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Also, though the SOTC–TE provides significant improvement over the FOTC, it was shown theoretically and experimen-
tally that is fails to address the convergence of TM evanescent modes. While it was also demonstrated that these eigenvalues
do not approach the origin and thereby degrade iterative solution performance as rapidly as the TE evanescent modes, these
modes do impact solver convergence. It is therefore desirable to have a full SOTC that accounts for both TE and TM evanes-
cent modes. We may address this issue in the future work. Moreover, a coarse space correction/global preconditioner may be
very beneficial in reducing the number of iterations, particularly for the transport-dominated problems. We shall report in
the future our efforts in coarse space correction schemes. To this end, although these TCs are derived and tested in planar
surfaces, we have also applied them to examples with non-planar surfaces without noticeable differences.
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